The origin of parasitophorous vacuole membrane lipids in malaria-infected erythrocytes.
نویسندگان
چکیده
During invasion of an erythrocyte by a malaria merozoite, an indentation develops in the erythrocyte surface at the point of contact between the two cells. This indentation deepens as invasion progresses, until the merozoite is completely surrounded by a membrane known as the parasitophorous vacuole membrane (PVM). We incorporated fluorescent lipophilic probes and phospholipid analogs into the erythrocyte membrane, and followed the fate of these probes during PVM formation with low-light-level video fluorescence microscopy. The concentration of probe in the forming PVM was indistinguishable from the concentration of probe in the erythrocyte membrane, suggesting that the lipids of the PVM are continuous with and derived from the host cell membrane during invasion. In contrast, fluorescently labeled erythrocyte surface proteins were largely excluded from the forming PVM. These data are consistent with a model for PVM formation in which the merozoite induces a localized invagination in the erythrocyte lipid bilayer, concomitant with a localized restructuring of the host cell cytoskeleton.
منابع مشابه
Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids
Plasmodium falciparum (Pf) infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM), a parasitophorous vacuole membrane (PVM), a tubulovesicular network (TVN), and Maurer's clefts (MC). Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA) and hemoglobin S-containing (HbAS, HbAS) erythro...
متن کاملSkeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface.
A key feature of Plasmodium falciparum, the parasite causing the most severe form of malaria in humans, is its ability to export parasite molecules onto the surface of the erythrocyte. The major virulence factor and variant surface protein PfEMP1 (P falciparum erythrocyte membrane protein 1) acts as a ligand to adhere to endothelial receptors avoiding splenic clearance. Because the erythrocyte ...
متن کاملAn exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes
The malaria parasite, Plasmodium falciparum, displays the P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of infected red blood cells (RBCs). We here examine the physical organization of PfEMP1 trafficking intermediates in infected RBCs and determine interacting partners using an epitope-tagged minimal construct (PfEMP1B). We show that parasitophorous vacuole (PV)-located P...
متن کاملMembrane-associated antigens of blood stages of Plasmodium, brasilianum, a quartan malaria parasite.
The localization of Plasmodium brasilianum-derived antigens in short and long clefts within the cytoplasm of infected erythrocytes and in association with knobs of the host cell membrane was demonstrated by immunoelectron microscopy with monoclonal antibodies. Our results document that malaria-induced short and long clefts, previously distinguishable only by morphology, differ also in antigenic...
متن کاملSpatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes
Export of proteins into the infected erythrocyte is critical for malaria parasite survival. The majority of effector proteins are thought to export via a proteinaceous translocon, resident in the parasitophorous vacuole membrane surrounding the parasite. Identification of the Plasmodium translocon of exported proteins and its biochemical association with exported proteins suggests it performs t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 106 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1993